Math Virtual Learning

Precalculus with Trigonometry

May 14, 2020

Precalculus with Trigonometry Lesson: May 14th, 2020

Objective/Learning Target:

Students will be introduced to the Trigonometric Form of a Complex Number and will be able to multiply and divide the trig form of complex numbers.

Let's Get Started:

Watch the video below to see an introduction to the Trig Form of Complex Numbers.

Watch Video: Trigonometric Form of Complex Numbers

OPTIONAL VIDEO: Trigonometric Form of a Complex Number
(This video is just another similar introduction to Trig Form of Complex Numbers.)

Trigonometric Form of a Complex Number

The trigonometric form of the complex number $z=a+b i$ is

$$
z=r(\cos \theta+i \sin \theta)
$$

where $a=r \cos \theta, b=r \sin \theta, r=\sqrt{a^{2}+b^{2}}$, and $\tan \theta=b / a$. The number r is the modulus of z, and θ is called an argument of z.

Definition of the Absolute Value of a Complex Number

The absolute value of the complex number $z=a+b i$ is

$$
|a+b i|=\sqrt{a^{2}+b^{2}} .
$$

Product and Quotient of Two Complex Numbers

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ be complex numbers.

$$
\begin{aligned}
& z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right] \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right], \quad z_{2} \neq 0 \quad \text { Product }
\end{aligned}
$$

Now What??????

What can be done with complex numbers in trig form?
Video: Multiply and Divide Complex Numbers in Trigonometric Form (Formulas)

Example \#1:

Plot $z=-2+5 i$ and find its absolute value.

Solution

The number is plotted in Figure 6.45. It has an absolute value of

$$
\begin{aligned}
|z| & =\sqrt{(-2)^{2}+5^{2}} \\
& =\sqrt{29} .
\end{aligned}
$$

FIGURE 6.45

Example \#2:

Write the complex number $z=-2-2 \sqrt{3} i$ in trigonometric form.

Solution

The absolute value of z is

$$
r=|-2-2 \sqrt{3} i|=\sqrt{(-2)^{2}+(-2 \sqrt{3})^{2}}=\sqrt{16}=4
$$

and the reference angle θ^{\prime} is given by

$$
\tan \theta^{\prime}=\frac{b}{a}=\frac{-2 \sqrt{3}}{-2}=\sqrt{3}
$$

FIGURE 6.47

Because $\tan (\pi / 3)=\sqrt{3}$ and because $z=-2-2 \sqrt{3} i$ lies in Quadrant III, you choose θ to be $\theta=\pi+\pi / 3=4 \pi / 3$. So, the trigonometric form is

$$
\begin{aligned}
z & =r(\cos \theta+i \sin \theta) \\
& =4\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)
\end{aligned}
$$

See Figure 6.47.

Example \#3:

Write the complex number in standard form $a+b i$.

$$
z=\sqrt{8}\left[\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right]
$$

Solution

Because $\cos \left(-\frac{\pi}{3}\right)=\frac{1}{2}$ and $\sin \left(-\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}$, you can write

$$
\begin{aligned}
z & =\sqrt{8}\left[\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right] \\
& =2 \sqrt{2}\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right) \\
& =\sqrt{2}-\sqrt{6} i
\end{aligned}
$$

Example \#4:

Find the product $z_{1} z_{2}$ of the complex numbers.

$$
z_{1}=2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \quad z_{2}=8\left(\cos \frac{11 \pi}{6}+i \sin \frac{11 \pi}{6}\right)
$$

Solution

$$
\begin{aligned}
z_{1} z_{2} & =2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \cdot 8\left(\cos \frac{11 \pi}{6}+i \sin \frac{11 \pi}{6}\right) \\
& =16\left[\cos \left(\frac{2 \pi}{3}+\frac{11 \pi}{6}\right)+i \sin \left(\frac{2 \pi}{3}+\frac{11 \pi}{6}\right)\right] \quad \begin{array}{l}
\text { Multiply moduli } \\
\text { and add arguments. }
\end{array} \\
& =16\left(\cos \frac{5 \pi}{2}+i \sin \frac{5 \pi}{2}\right)
\end{aligned}
$$

$$
=16\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right) \quad \text { You can check this result by first converting the complex numbers to the standard }
$$

$$
=10\left(\cos \frac{\overline{2}}{2}+i \sin \frac{1}{2}\right)
$$ forms $z_{1}=-1+\sqrt{3} i$ and $z_{2}=4 \sqrt{3}-4 i$ and then multiplying algebraically, as in

$$
=16[0+i(1)]
$$ Section 2.4.

$$
=16 i
$$

$$
\begin{aligned}
z_{1} z_{2} & =(-1+\sqrt{3} i)(4 \sqrt{3}-4 i) \\
& =-4 \sqrt{3}+4 i+12 i+4 \sqrt{3} \\
& =16 i
\end{aligned}
$$

Example \#5:

Find the quotient z_{1} / z_{2} of the complex numbers.

$$
z_{1}=24\left(\cos 300^{\circ}+i \sin 300^{\circ}\right) \quad z_{2}=8\left(\cos 75^{\circ}+i \sin 75^{\circ}\right)
$$

Solution

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{24\left(\cos 300^{\circ}+i \sin 300^{\circ}\right)}{8\left(\cos 75^{\circ}+i \sin 75^{\circ}\right)} \\
& =\frac{24}{8}\left[\cos \left(300^{\circ}-75^{\circ}\right)+i \sin \left(300^{\circ}-75^{\circ}\right)\right] \\
& =3\left(\cos 225^{\circ}+i \sin 225^{\circ}\right) \\
& =3\left[\left(-\frac{\sqrt{2}}{2}\right)+i\left(-\frac{\sqrt{2}}{2}\right)\right] \\
& =-\frac{3 \sqrt{2}}{2}-\frac{3 \sqrt{2}}{2} i
\end{aligned}
$$

Divide moduli and subtract arguments.

Practice

On a separate piece of paper, do each of the following problems. Answers will be provided on the next page.

1. Write $-1+\sqrt{3} i$ in trigonometric form.
2. Write $2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$ in standard form.
3. Multiply $\left[2\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right]\left[6\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)\right]$
4. Divide $\frac{12\left(\cos 92^{\circ}+i \sin 92^{\circ}\right)}{2\left(\cos 122^{\circ}+i \sin 122^{\circ}\right)}$

Practice - ANSWERS

On a separate piece of paper, do each of the following problems. Answers will be provided on the next page.

1. Write $-1+\sqrt{3} i$ in trigonometric form.
2. $2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
3. Write $2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$ in standard form.

$$
\text { 2. } 1+\sqrt{3} i \quad \text { or } \quad 1+i \sqrt{3}
$$

3. Multiply $\left[2\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right]\left[6\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)\right]$
4. Divide $\frac{12\left(\cos 92^{\circ}+i \sin 92^{\circ}\right)}{2\left(\cos 122^{\circ}+i \sin 122^{\circ}\right)}$
5. $12\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
6. $6\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)$

Additional Resource Videos: Multiplying Complex Numbers in Trig Form

Multiplying Complex Numbers In Trigonometric Form

Additional Practice:
Complex Numbers Rectangular and Trig Form
Problems 1-18
Please note that when it asks for Polar Form, it means Trig Form
\section*{Practice for Trig and Complex Form}

